

Table Of Contents
Note: see details at the end of this book for getting the Free Angular For

Beginners Course, plus a bonus content Typescript Video List.

Section � - Section � - ngClass and
ngStyle

Introduction

Some good examples for the use of ngClass

Passing an Array of CSS classes to ngClass

Passing a String of CSS classes to ngClass

Passing a con�guration object to ngClass

Delegating to the component which styles should be applied

How to use ngStyle to add embedded styles to our templates

Section � - Section � - Style Isolation
Why Style Isolation?

Another bene�t of style isolation

A Demo of Angular Emulated Encapsulation

How does Angular Style Isolation work? Emulated View

Encapsulation

Summary of how the host and template element properties

work

How do these properties enable view encapsulation?

https://angular-university.io/course/getting-started-with-angular2?utm=amz-styling

How does Angular encapsulate styles?

The :host pseudo-class selector

Combining the :host selector with other selectors

The ::ng-deep pseudo-class selector

The :host-context pseudo-class selector

Angular CLI Sass Support
Angular CLI - Sass, Less and Stylus support

Demo of some the things we can do with Sass

Final Thoughts & Bonus Content
Conclusions and Recommendations

Bonus Content - Typescript - A Video List

Bonus Content - Angular For Beginners Course

Angular Styling Jumpstart

Introduction
Welcome to the Angular Styling Jumpstart Book, thank you for joining!

This book is meant to be a one-stop shop for everything that relates to

Angular component styling: it contains everything that you are likely to

need to style your components, in a single comprehensive reference.

So without further ado, let's get started!

I hope you will enjoy this book, please send me your feedback at

admin@angular-university.io.

Section � - ngClass and ngStyle
Component Styling using ngClass - when
to use it?
Most of the styles that we need to apply are always present, and can be

simply be applied as standard HTML in our templates, like this:

1

2

3

4

<p>A Bootstrap Primary Button:</p>

<button class="btn btn-primary">Button</button>

5

But there are often styles that are applied conditionally to our templates

- they are added to an element only if a certain programmatic condition

is met.

This is, for example, the case of state styles (if we adopt the SMACSS

terminology).

For these cases, is ngClass needed?
Note that many state styles can be natively implemented using browser

CSS pseudo-classes, such as for example:

styles for identifying an element with the focus, via the

:focus pseudo class

hover styles and on-click active state styles (using :hover and

:active)

For these type of state styles natively supported by the browser, it's

better to use the CSS pseudo classes whenever possible. So for these

very common cases we won't need ngClass .

Some good examples for the use of
ngClass

But there are many other state styles that are not natively supported by

the browser. These styles could for example include:

styles for identifying the currently selected elements of a list

styles for identifying the currently active menu entry in a

navigation menu

https://smacss.com/

styles to identify a certain feature of a element; for example to

identify a new element in an e-commerce site

If the element that we are styling only has one of those state styles, we

can even apply it simply by using the plain input property template

syntax, without any extra directive:

1

2

3

4

5

6

7

8

9

10

Notice the syntax [class.btn-primary] that is activating the btn-

primary CSS class, effectively adding it to the button.

This expression will add or not the class to the element depending on

the truthiness of the expression, which in this case is always true.

But more often than not, an element ends up having multiple state styles,

and that is when the ngClass directive comes in handy!

The ngClass directive will take an expression that will be used to

determine which state styles to apply at a given time to the styled

element.

The expression passed on to ngClass can be:

<p>Default Button:</p>

<button class="btn btn-primary" type="submit">Button</button>

<p>Equivalent example using Button:</p>

<button class="btn"

 [class.btn-primary]="true"

 type="submit">Button

</button>

an object

an array

a string

Let's go over each one of these 3 cases with examples, and then see

how we can make sure that we can still keep our templates light and

readable.

Passing an Array of CSS classes to ngClass
One way of defining what classes should be active at a given moment is

to pass an array of strings to the ngClass directive.

For example, the following expression contains an array of classes:

1

2

3

4

Angular will then take the array passed to ngClass , and apply the CSS

classes that it contains to the HTML button element. This is the

resulting HTML:

1

2

3

Notice that the CSS classes don't have to be hard-coded in the template

using this syntax (its just an example), more on this later.

Passing a String of CSS classes to ngClass

<p>Passing an Array of classes:</p>

<button [ngClass]="['btn', 'btn-primary']">Button</button>

<button class="btn btn-primary">Button</button>

Its also possible to pass to ngClass a string, that contains all the CSS

classes that we want to apply to a given element:

1

2

3

4

5

6

7

8

This syntax would give the same results as before, meaning that the two

CSS classes btn and btn-primary would still be applied.

Passing a configuration object to ngClass
The last and most commonly used way that we can configure ngClass

is by passing it an object:

the keys of that object are the names of the CSS classes that

we want to apply (or not)

and the values of the con�guration object should be booleans

(or an expression that evaluates to a boolean) that indicate if

the CSS class should be applied

Let's have a look at an example of how to use this syntax:

1

2

3

4

5

6

<p>Passing a string:</p>

<button [ngClass]="'btn btn-primary'"

 type="submit"

 (click)="submit()">

 Button

</button>

<p>Passing a configuration object:</p>

<button [ngClass]="{ btn:true, 'btn-primary':true }">

 Button

</button>

This example would give the same results as before: the two CSS

classes would still get applied.

But if for example start using longer expressions to calculate our

boolean values, or have several state classes, this syntax could quickly

become hard to read, overloading the template and putting too much

logic in it.

Let's then see what we can if we run into that case!

Delegating to the component which styles
should be applied
One of the roles of the component class is to:

coordinate the link between the View de�nition (the

template), and the data passed to the component (the Model)

as well as to keep track of any other type of visual component

state that is tied uniquely to the component and is transient in

nature (like a �ag saying if a collapsible panel is open or not)

If our ngClass expressions start to get too cumbersome and hard to

read, what we can do is pass to ngClass the output of a component

method:

1

2

3

4

5

6

7

8

@Component({

 selector: 'app-root',

 template: `

 <button (click)="toggleState()">Toggle State</button>

 <p>Obtaining the CSS classes from the

 component method:</p>

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Notice that we could pass parameters to this method if needed. Let's

then break down what is going on in this example:

The component now has a member variable stateFlag , which

will identify if a given component state is active or not.

This could also have been an enum , or a calculation derived

from the input data

The method calculateClasses will now return a con�guration

object equivalent to the one we just saw above

the CSS class btn-extra-class will be added or not to the

HTML button depending on the value of the stateFlag

 <button [ngClass]="calculateClasses()"

 (click)="submit()">Button</button>

 `})

export class AppComponent {

 stateFlag = false;

 toggleState() {

 this.stateFlag = !this.stateFlag;

 }

 submit() {

 console.log('Button submitted');

 }

 calculateClasses() {

 return {

 btn: true,

 'btn-primary': true,

 'btn-extra-class': this.stateFlag

 };

 }

}

variable

But this time around the calculation of the configuration object is done

in a component method, and the template becomes a bit more readable.

This function could have also returned an array or string containing

multiple CSS classes, and the example would still work!

As we can see, between the native browser functionality and ngClass ,

we will be able to do most of the styling for our components.

But are there use cases where we would like to apply styles directly to

an element?

How to use ngStyle to add embedded
styles to our templates
Just like in the case of plain CSS, sometimes there are valid use cases

for applying directly styles to an HTML element, although in general this

is to be avoided.

This is because this type of embedded styles takes precedence over any

CSS styles except styles that are marked with !important .

To give an example of when we would like to use this: Imagine a color

picker element, that sets the color of a sample rectangle based on a

handle that gets dragged by the user.

The varying color of the element needs an embedded HTML style, as its

not known upfront. If we run into such an use case using Angular, we

can implement it using the ngStyle built-in core directive:

1

2

3

4

And this would be the resulting HTML:

1

2

3

Just like the case of ngClass , if our ngStyle expression starts to get

too large, we can always call a component method to calculate the

configuration object:

1

2

3

4

And with this, we can now add both CSS classes and embedded styles

conditionally to our components!

But another key feature of Angular that we have not covered yet, is the

ability to isolate a component style so that it does not interfere with

other elements on the page.

Section � - Style Isolation
Why Style Isolation?

<p>Passing an object to ngStyle:</p>

<button [ngStyle]="{background: 'red'}">Button</button>

<button style="background: red">Button</button>

<p>Obtaining styles from a component method:</p>

<button [ngStyle]="calculateStyles()">Button</button>

Why would we want to isolate the styles of our components? There are a

couple of reasons for that, and one key reason is CSS maintainability.

As we develop a component style suite for an application, we tend to run

into situations where the styles from one feature start interfering with

the styles of another feature.

This is because browsers do not have yet widespread support for style

isolation, where we can constrain one style to be applied only to one

particular part of the page.

If we are not careful and systematically organize our styles to prevent

this issue (for example using a methodology like SMACSS), we will

quickly run into CSS maintenance issues.

Wouldn't it be great to be able to style our components with just short,

simple and easy to read selectors, without having to worry about all the

scenarios where those styles could be accidentally overridden?

Another benefit of style isolation
Here is another scenario: how many times did we try to use a third-party

component, add it to our application just to find out that the component

is completely broken due to styling issues?

Style isolation would allow us to ship our components knowing that the

styles of the component will (most likely) not be overridden by other

styles in target applications.

This makes the component effectively much more reusable, because the

component will now in most cases simply just work, styles included.

Angular View Encapsulation brings us all of these advantages, so let's

learn how it works!

A Demo of Angular Emulated Encapsulation
In this section, we will see how Angular component styling works under

the hood, as this is the best way to understand it. This will also allow us

to debug the mechanism if needed.

In order to benefit from the default view encapsulation mechanism of

Angular, all we need to do is to add our CSS classes to an external CSS

file:

1

2

3

4

5

But then, instead of adding this file to our index.html as a link tag,

we will instead associate it with our component using the styleUrls

property:

1

2

3

4

5

6

7

8

9

10

11

.red-button {

 background:red;

}

@Component({

 selector: 'app-root',

 styleUrls:['./app.component.css'],

 template: `

 <button class="red-button">Button</button>

 `})

export class AppComponent {

 ...

}

The color red would then be applied to this button, as expected. But

what if now we have another button, for example directly at the level of

our index.html ?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

If you didn't know that there was some sort of style isolation mechanism

in action, you might be surprised to find out that this button does NOT

get a red background!

So what is going on here? Let's see how this mechanism works, because

knowing that is what is going to allow us to debug it if needed.

How does Angular Style Isolation work?
Emulated View Encapsulation
To better understand how default view encapsulation works, let's see

what the app-root custom HTML element will look like at runtime:

<!doctype html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>StylesApp</title>

 <base href="/">

 ...

 </head>

<body>

 <app-root></app-root>

 <button class="red-button">index.html Button</button>

</body>

</html>

1

2

3

4

5

6

7

8

9

Several things are going on at the level of the runtime HTML:

a strange looking property was added to the ap-root custom

element: the _nghost-c0 property

Each of the HTML elements inside the application root

component got another strange looking but di�erent property:

_ngcontent-c0

What are these properties?
So how do these properties work? To better understand these properties

and how they enable style isolation, we are going to create a second

separate component, that just contains a button with the blue color.

For simplicity, we will define the styles for this component inline next to

the template:

1

2

3

4

5

6

7

8

9

<app-root _nghost-c0="">

 <h2 _ngcontent-c0="">Component Style Isolation example</h2>

 <button _ngcontent-c0="" class="red-button">Button</button>

</app-root>

@Component({

 selector: 'blue-button',

 template: `

 <h2>Blue button component</h2>

 <button class="blue-button">Button</button>

 `,

 styles: [`

10

11

12

13

14

15

16

17

And using this newly defined component, we are going to add it to the

template of the application root component:

1

2

3

4

5

6

7

8

9

10

11

12

13

Try to guess at this stage what the HTML at runtime would look like, and

what happened to those strangely named properties!

The host element and template element style
isolation properties
With this second component in place, let's have a second look at the

HTML. The way that these two properties work will now become much

more apparent:

1

 .blue-button {

 background:blue;

 }

 `]

})

export class BlueButtonComponent {

}

@Component({

 selector: 'app-root',

 styleUrls:['./app.component.css'],

 template: `

 <button class="red-button">Button</button>

 <blue-button></blue-button>

 `})

export class AppComponent {

 ...

}

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Notice the blue-button element, we have now a new host property

called _nghost-c1 .

The blue-button element is still tagged with the _ngcontent-c0

property which is applied to all template elements on the application

root component.

But now, the elements inside the blue-button template now get applied

the _ngcontent-c1 property instead!

Summary of how the host and template
element properties work
Let's then summarize how these special HTML properties work, and then

see how they enable style isolation:

upon application startup (or at build-time with AOT), each

component will have a unique property attached to the host element,

<app-root _nghost-c0="">

 <h2 _ngcontent-c0="">Component Style Isolation example</h2>

 <button _ngcontent-c0="" class="red-button">Button</button>

 <blue-button _nghost-c1="" _ngcontent-c0="">

 <h2 _ngcontent-c1="">Blue button component</h2>

 <button _ngcontent-c1="" class="blue-button">Button</button>

 </blue-button>

</app-root>

depending on the order in which the components are processed:

_nghost-c0 , _nghost-c1 , etc.

together with that, each element inside each component template

will also get applied a property that is unique to that particular

component: _ngcontent-c0 , _ngcontent-c1 , etc.

This is all transparent and done under the hood for us.

How do these properties enable view
encapsulation?
The presence of these properties could allow us to write manually CSS

styles which are much more targetted than just the simple styles that

we have on our template.

For example, if we want to scope the blue color to the blue-button

component only, we could write manually the following style:

1

2

3

4

5

6

7

8

9

10

11

12

13

/* Style 1 - a simple CSS style,

 with low specificy and easilly overridable */

.blue-button {

 background: blue;

}

/* Style 2 - a similar style, with a much higher

 specificity and much harder to override */

.blue-button[_ngcontent-c1] {

 background: blue;

}

While style 1 was applicable to any element with the blue-button class

anywhere on the page, style 2 will only work for elements that have that

strangely named property!

So this means that style 2 is effectively scoped to only elements of the

blue-button component template, and will not affect any other

elements of the page.

So we now can see how those two special properties do enable some

sort of style isolation, but it would be cumbersome to have to use those

properties manually in our CSS (and in fact, we should not).

But luckily, we don't have to. Angular will do that automatically for us.

How does Angular encapsulate styles?
At startup time (or at build time if using AOT), Angular will see what

styles are associated with which components, via the styles or

styleUrls component properties.

Angular will then take those styles and apply them transparently the

corresponding isolating properties, and will then inject the styles directly

into the page header as a style tag:

1

2

3

4

5

6

<style>

 .blue-button[_ngcontent-c1] {

 background:blue;

 }

</style>

The _ngcontent-c1 property is unique to elements of the blue-button

template, so the style will be scoped to those elements only.

And that is how the Angular default view encapsulation mechanism

works!

This mechanism is not 100% bullet-proof as it does not guarantee

perfect isolation, but in practice, it will nearly always work.

The mechanism it's not based on the shadow DOM but instead in these

special HTML properties, so if we really wanted to we could still override

these styles.

But given that the native Shadow Dom isolation mechanism is currently

available only in Chrome and Opera, we cannot yet rely on it.

This mechanism is very useful because it enables us to write simple

styles that will not break easily, but we might want to break this isolation

selectively from time to time.

Let's learn a couple of ways of doing that, and why we would want to do

that.

The :host pseudo-class selector
Sometimes we want to style the component custom HTML element

itself, and not something inside its template.

Let's say for example that we want to style the app-root component

itself, by adding it, for example, an extra border.

We cannot do that using styles inside its app.component.css

associated file, right?

This is because all styles inside that file will be scoped to elements of

the template, and not the outer app-root element itself.

If we want to style the host element of the component itself, we need

the special :host pseudo-class selector. This is the new version of our

app.component.css that uses it:

1

2

3

4

5

6

7

8

9

10

11

This selector will ensure those styles are only targeting the app-root

element. Remember that _nghost-c0 property that we talked about

before? This is how it's used to implement the :host selector at

runtime:

1

2

3

4

5

6

7

8

/* other styles on app.component.css */

...

/* styles applied directly to the ap-root element only */

:host {

 border: 2px solid dimgray;

 display: block;

 padding: 20px;

}

<style>

 [_nghost-c0] {

 border: 2px solid dimgray;

 display: block;

 padding: 20px;

 }

</style>

9

The use of the special _nghost-c0 will ensure that those styles are

scope only to the app-root element, because app-root gets added

that property at runtime:

1

2

3

4

5

Combining the :host selector with other selectors
Notice that the can combine this selector with other selectors, which is

something that we have not yet talked about.

This is not specific to this selector, but have a look for example at this

selector, where we are styling h2 elements inside the host element:

1

2

3

4

5

6

You could be surprised to find out that this style only applies to the h2

elements inside the app-root template, but not to the h2 inside the

blue-button component.

To see why, let's have a look at the styles that were generated at

runtime:

<app-root _nghost-c0="">

 ...

</app-root>

/* let's add another style to app.conmponent.css */

:host h2 {

 color: red;

}

1

2

3

4

5

6

7

8

9

So we can see that the special scoping property gets applied also to

nested selectors, to ensure the style is always scoped to that particular

template.

But if we did want to override the styles of all the h2 elements, there is

still a way.

The ::ng-deep pseudo-class selector
If we want our component styles to cascade to all child elements of a

component, but not to any other element on the page, we can currently

do so using by combining the :host with the ::ng-deep selector:

1

2

3

4

5

This will generate at runtime a style that looks like this:

1

2

3

4

<style>

 [_nghost-c0] h2[_ngcontent-c0] {

 color: red;

 }

</style>

:host /deep/ h2 {

 color: red;

}

<style>

[_nghost-c0] h2 {

 color: red;

5

6

7

So this style will be applied to all h2 elements inside app-root , but not

outside of it as expected.

This combination of selectors is useful for example for applying styles

to elements that were passed to the template using ng-content .

The :host-context pseudo-class selector
Sometimes, we also want to have a component apply a style to some

element outside of it. This does not happen often, but one possible

common use case is for theme enabling classes.

For example, let's say that we would like to ship a component with

multiple alternative themes. Each theme can be enabled via adding a

CSS class to a parent element of the component.

Here is how we could implement this use case using the :host-context

selector:

1

2

3

4

5

6

7

8

9

10

11

12

}

</style>

@Component({

 selector: 'themeable-button',

 template: `

 <button class="btn btn-theme">Themeable Button</button>

 `,

 styles: [`

 :host-context(.red-theme) .btn-theme {

 background: red;

 }

 :host-context(.blue-theme) .btn-theme {

 background: blue;

13

14

15

16

17

18

19

These themed styles are deactivated by default. In order to activate one

theme, we need to add to any parent element of this component one of

the theme-activating classes.

For example, this is how we would activate the blue theme:

1

2

3

4

5

All of this functionality that we saw so far was using plain CSS.

But especially in the case of themes, it would be great to be able to

extend the CSS language and for example define the primary color of a

theme in a variable, to avoid repetition like we would do in Javascript.

That is one of the many use cases that we can support using a CSS

preprocessor.

Section � - Angular CLI Sass Support

Angular CLI - Sass, Less and Stylus

 }

 `]

})

export class ThemeableButtonComponent {

}

<div class="blue-theme">

 <themeable-button></themeable-button>

</div>

Angular CLI - Sass, Less and Stylus
support
A CSS pre-processor is a program that takes an extended version of

CSS, and compiles it down to plain CSS.

The Angular CLI supports all major pre-processors, but the one that

seems most commonly used in Angular related projects (such as for

example Angular Material) is Sass.

In order to use a Sass file instead of a CSS file, we just need to pass

such file to the styleUrls property of a component:

1

2

3

4

5

6

7

8

9

10

The CLI will then take this Sass file and convert it to plain CSS on the fly.

Actually, we can generate new components using Sass files using this

command:

ng new cli-test-project --style=sass

We can also set a global property, so that Sass files are used by default:

ng set defaults.styleExt scss

@Component({

 selector: 'app-root',

 styleUrls:['./app.component.scss'],

 template: `...`

})

export class AppComponent {

 ...

}

https://github.com/angular/material2

Demo of some the things we can do with
Sass
A pre-processor is a great thing to add to our project, to help us write

more maintainable styles. Let's have a look at some of the things that

we can do with Sass:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

If you have never seen this syntax before, it could look a bit surprising!

But here is what is going on, line by line:

on line 2, we have actually de�ned a CSS variable! This is a

huge feature missing from CSS

we can de�ne not only colors but numbers or event shorthand

combined properties such as: $my-border: 1px solid red

on lines 6, 10 and 11 we are using the variable that we just

created

on line 9 we are using a nested style, and making a reference

to the parent style using the & syntax

$border-color: red;

:host-context(.au-fa-input-red-theme) {

 border-color: $border-color;

 &.input-focus {

 -webkit-box-shadow: 0px 0px 5px $border-color;

 box-shadow: 0px 0px 5px $border-color;

 }

}

And this is just a small sample of what we can do with Sass, just a few

very commonly used features. The Angular CLI also has support for

global styles, that we can combine with our component-specific view

encapsulated styles.

We can add global styles not only for the supported pre-processors, but

for plain CSS as well.

Conclusions and Recommendations
There are a ton of options to style our components, so its important to

know which one to use when and why. Here is a short summary:

sometimes we want global styles, that are applied to all

elements of a page - we can add those to our angular-

cli.json con�g

most styles can be added simply to the HTML directly, for

those we can simply add them to the class property, and no

special Angular functionality is needed

Many state styles can be used using browser-supported

pseudo-class selectors such as :focus , we should prefer those

conventional solutions for those cases

for state styles that don't have a pseudo-class selector linked

to it, its best to go with ngClass

if the ngClass expressions get too big, it's a good idea to move

the calculation of the styles to the component class

only for situations where we have a dynamically calculated

embedded style should we use ngStyle , this should be rarely

needed

https://github.com/angular/angular-cli/blob/master/docs/documentation/stories/global-styles.md

the Angular View encapsulation mechanism allows us to write

simpler styles, that are simpler to read and won't interfere

with other styles

The default view encapsulation mechanism will bring the

long-term bene�t of having much less CSS-related bugs.

Using it, we will rarely fall into the situation when we add

some CSS that �xes one screen but accidentally break

something else - this is a huge plus!

If we are writing a lot of CSS in our project, we probably want

to adopt a methodology for structuring our styles from the

beginning, such as for example SMACSS

At a given point we could consider introducing a pre-

processor and use some of its features, for example for

de�ning CSS variables

I hope this helps with all the many options that we have available for

styling our components! If you have any questions about the book, any

issues or comments I would love to hear from you at admin@angunar-

university.io

I invite you to have a look at the bonus material below, I hope that you

enjoyed this book and I will talk to you soon.

Kind Regards,

Vasco

Angular University

Typescript - A Video List

https://smacss.com/

In this section, we are going to present a series of videos that cover

some very commonly used Typescript features.

Click Here to View The Typescript Video List

These are the videos available on this list:

Video 1 - Top 4 Advantages of Typescript - Why Typescript?

Video 2 - ES6 / Typescript let vs const vs var When To Use

Each? Const and Immutability

Video 3 - Learn ES6 Object Destructuring (in Typescript),

Shorthand Object Creation and How They Are Related

Video 4 - Debugging Typescript in the Browser and a Node

Server - Step By Step Instructions

Video 5 - Build Type Safe Programs Without Classes Using

Typescript

Video 6 - The Typescript Any Type - How Does It Really

Work?

http://blog.angular-university.io/why-typescript-video-list

Video 7 - Typescript @types - Installing Type De�nitions For

3rd Party Libraries

Video 8 - Typescript Non-Nullable Types - Avoiding null and

unde�ned Bugs

Video 9 - Typescript Union and Intersection Types- Interface

vs Type Aliases

Video 10 - Typescript Tuple Types and Arrays Strong Typing

Angular For Beginners Course
If you are looking to learn Angular, have a look at this free 2h

introductory course.

The Angular Tutorial for Beginners is an over 2 hours course that is

aimed at getting a complete beginner in Angular comfortable with the

main notions of the core parts of the framework:

Click Here To View The Angular For The Beginners Course

https://angular-university.io/course/getting-started-with-angular2?utm=amz-styling
https://angular-university.io/course/getting-started-with-angular2?utm=amz-styling

The other Angular courses on the same website have about 25% of its

content free as well, have a look and enjoy the videos.

https://angular-university.io/course/getting-started-with-angular2?utm=amz-styling

	styling-cover.pdf (p.1)
	Styling_TOC.pdf (p.2-3)
	Angular_Styling_Book_Body.pdf (p.4-33)

		2017-09-06T00:25:23+0000
	Preflight Ticket Signature

